Reduction of Carbon Dioxide Promoted by a Dinuclear Tantalum Tetrahydride Complex

Joachim Ballmann,† Fraser Pick,† Ludovic Castro,‡,§ Michael D. Fryzuk,*,† and Laurent Maron*,‡,§

† Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, [Brit](#page-2-0)ish Columbia, Canada V6[T](#page-2-0) ‡ Universitéde Toulouse, INSA, UPS, LPCNO, 135 avenue de Rangueil, F-31077 Toulouse, France § CNRS, LPCNO UMR 5215, F-31077 Toulouse, France

S Supporting Information

[AB](#page-2-0)STRACT: [The](#page-2-0) [reaction](#page-2-0) of 1 equiv of carbon dioxide with the dinuclear tetrahydride complex $([NPN]Ta)_{2}(\mu$ -H)₄ [where NPN = PhP(CH₂SiMe₂NPh)₂] results in the formation of $([NPN]Ta)_2(\mu\text{-}OCH_2O)(\mu\text{-}H)_2$ via a combination of migratory insertion and reductive elimination. The identity of the ditantalum complex containing a methylene diolate fragment was confirmed by singlecrystal X-ray analysis, NMR analysis, and isotopic labeling studies. Density functional theory calculations were performed to provide information on the structure of the initial adduct formed and likely transition states and intermediates for the process.

Carbon dioxide (CO_2) is potentially a plentiful C_1 source
that continues to occupy discussions related to climate change.¹ While conversion of $CO₂$ to higher-value carbon-based materials is a worthy goal, it is clear that these kinds of approa[ch](#page-2-0)es are not realistic as a way to sequester this greenhouse gas,² particularly if dihydrogen (H_2) derived via steam reforming is involved. Nevertheless, from a fundamental point of view, dis[co](#page-2-0)vering systems that can transform CO_2 with^{3−5} or without H_2^6 is of considerable interest^{7−9} and may provide hints on ways to better utilize this ever-more-abundant resourc[e.](#page-2-0)^{1[0](#page-2-0)}

[W](#page-2-0)e have described the faci[le a](#page-2-0)ctivation of dinitrogen (N_2) by dinuclear tantalum tetrahydride, $(\lceil NPN \rceil T_a)_{2}(\mu-H)_{4}$ $(\lceil NPN \rceil T_a)_{2}(\mu-H)_{4}$ $(\lceil NPN \rceil T_a)_{2}(\mu-H)_{4}$ (1, where $NPN = PhP(CH_2SiMe_2NPh)_{2}$, to generate the side-on end-on ditantalum dinitrogen complex $\left(\rm{[NPN]Ta}\right)_2(\mu\text{-}\eta^2\text{:}\eta^1\text{-}N_2)(\mu\text{-}H)_2$ $(2, 11, 12)$ Scheme 1). Given that N_2 is a very stable, inert molecule, the question arose as to what the outcome would be in the rea[ction](#page-2-0) of tetrahydride 1 with the very stable $CO₂$ molecule. Herein we report our efforts to examine the reactivity of $CO₂$ with the strongly reducing ditantalum tetrahydride complex 1.

Scheme 1

What emerges from this work is a rare example of a dinuclear metal hydride system that functionalizes $CO₂$ and retains its dinuclearity.

Our initial inspiration to examine the activation of $CO₂$ was based on the report that certain zirconium and hafnium dinitrogen complexes react productively with $CO₂$ to generate new N–C bonds and regioisomeric hydrazides.¹³ However, the reaction of CO_2 and the tantalum side-on end-on N_2 complex 2 led to the formation of a multitude of product[s e](#page-2-0)ven when the stoichiometry of added $CO₂$ was controlled. Undaunted, we turned to the reaction of the ditantalum tetrahydride 1 with $CO₂$ and discovered that a single product could be obtained provided that strict control of the stoichiometry was followed. For example, if excess $CO₂$ is used, very complicated spectra are obtained, indicative of a mixture of products, perhaps a consequence of migratory insertion of $CO₂$ in the tantalum– amido linkages of the NPN ligand. However, if exactly 1 equiv of $CO₂$ is employed, a clean reaction ensues with the formation of only one very symmetrical product (60% recrystallized yield) on the basis of a singlet at δ -13.1 observed in the ³¹P NMR spectrum. The corresponding $^1\mathrm{H}$ NMR spectrum shows a triplet resonance downfield at δ 6.81, which simplifies to a singlet upon ${}^{31}P$ decoupling and integrates to two H atoms. Analysis by heteronuclear single quantum coherence indicates that these H atoms are not C-bound, consistent with the presence of bridging tantalum hydrides, and are likely a $Ta_2(\mu-H)_2$ moiety. Also diagnostic in the ¹H NMR spectrum is a singlet at δ 6.11 that again integrates for two H atoms. That these two sets of proton resonances are derived from the bridging hydrides of 1 was confirmed by the use of $1-d_{12}$, in which all four bridging hydrides and all eight of the o-NPh protons are deuterated (see the Supporting Information); in this reaction, the peaks at δ 6.81 and 6.11 both disappear in the $^1\mathrm{H}$ NMR spectrum, as does a peak at δ [6.89 due to the](#page-2-0) o-H atoms of the NPh moiety of the NPN ligand. When ¹³C-labeled CO₂ was utilized, the resonance at δ 6.11 becomes a doublet with $^{1}J_{\text{CH}} = 110$ Hz. Given our earlier publication¹⁴ of the complete disassembly of CS_2 to generate the ditantalum species with a bridging methylene, an analogous structure [wa](#page-2-0)s considered. However, there are no bridging hydrides in the CS_2 disassembly product, and the chemical shift of the resonance due to the bridging methylene of this material occurs at δ 4.5 in the ¹H NMR spectrum, which is considerably

Received: November 12, 2012 Published: January 29, 2013

upfield of the methylene resonance observed for the $CO₂$ product 3. In fact, a recent report of the reaction of $CO₂$ with a mononuclear tantalum hydride to generate a ditantalum species with a methylene diolate fragment proved to be a better analogy.¹⁵

The solid-state structure of this complex is shown in Figure 1, along w[ith](#page-2-0) the transformation in eq 1; the most notable feature of

Figure 1. Selected bond lengths (Å) and bond angles (deg) for 3: Ta1− N1 2.091(7), Ta1−N2 2.062(6), Ta1−P1 2.628(2), Ta1−O1 1.980(5), Ta1−Ta1 2.7688(7), N1−Si1 1.742(7), N2−Si2 1.739(7), C1−O1 1.384(7); O1−C1−O1′ 117.0(9), Ta1−O1−C1 126.4(5), O1−Ta1− O1′ 117.0(9), O1−Ta1−N1 91.6(2), O1−Ta1−N2 91.6(2), N1− Ta1−N2 118.2(3), O1−Ta1−P1 160.99(15), N1−Ta1−P1 77.82(19), N2−Ta1−P1 79.08(19), O1−Ta1−Ta1′ 83.45(14).

3 is the bridging methylene diolate unit between the two Ta centers. The Ta1−O1 bond length of 3 of 1.980(5) Å is slightly longer that the Ta−O bonds of 1.929(5) and 1.917(2) Å found in two dinuclear methylene diolate complexes formed via intermolecular processes.¹⁵ The other parameters of this μ -OCH₂O unit compare unremarkably to other examples of this rare kind of fragment with [th](#page-2-0)e exception that the O−C−O angle in 3 of $117.0(9)$ ^o is larger than the aforementioned dinuclear systems [cf. 111.4(7) and 109.7(3) $^{\circ}]^{15}$ and a tetrayttrium cluster $[cf. 107.6(3)°]^{16}$ that contain this unit.

The formation of 3 likely involve[s h](#page-2-0)ydride addition reactions most probably [th](#page-2-0)rough a formate-type intermediate.^{3,17} In an effort to shed light on this process, possible structures of intermediates and transition states were examined co[mput](#page-2-0)ationally. Density functional theory $[B3PW91//SDDALI(Ta,P)/6-$ 31G** (other atoms)] calculations were carried out on the full system.

The Gibbs free-energy profile of the reaction between 1 and $CO₂$ is presented in Figure 2. For each minimum, singlet and triplet spin states have been considered, and the singlet spin states are always the most stable, by 20−50 kcal/mol. Thus, the reactivity takes place on the singlet potential energy surface.

Figure 2. Gibbs free-energy profile of the reaction between the tetrahydride complex 1 and $CO₂$. NPN ligands have been simplified for clarity. Atoms colors: Ta, green; P, orange; N, blue; O, red; C, black; H, white. For atom numbering, Ta1 is on the left, while Ta2 is on the right.

The first step of the reaction is coordination of $CO₂$ to complex 1, involving the two Ta centers. In $Ta_2H_4 \text{CO}_2$, two bridging hydride groups have become terminal in order to liberate one coordination site on each Ta center and thus allow the μ -η²:η²-coordination mode of CO₂, all of which happens in a concerted fashion. The computed O−C−O angle is 132.8° and both C−O bonds are equal to 1.26 Å, suggesting that $CO₂$ has been reduced by complex 1. The Ta−Ta distance has increased from 2.59 to 3.01 Å, so that the Ta−Ta bond has been broken. This is confirmed by natural bond order (NBO) analysis, which gives an oxidation state of +5 for each Ta, suggestive of the presence of CO_2^2 , at least formally. NPA charges show that the C atom of $CO₂$ is strongly positively charged (+0.70). The formation of this adduct is slightly exergonic by −3.4 kcal/mol, but it readily transforms to give the dinuclear μ - η ²- η ²-formato $Ta₂H₃·HCO₂$. Indeed, the transition state corresponding to the hydrogen transfer from one Ta center to $CO₂$ lies at only +10.7 kcal/mol with respect to $Ta_2H_4 \text{·}CO_2$, while the formation of $Ta₂H₃·HCO₂$ is exergonic by -11.4 kcal/mol with respect to the adduct. The geometry of the first transition state is standard because one O atom of $CO₂$ has just moved away from the Ta-Ta– $CO₂$ plane of Ta₂H₄·CO₂ in order to allow the terminal hydride to bridge from the Ta center to the C atom of $CO₂$. All other bond lengths or angles are mostly unchanged.

The intermediate $Ta_2H_3 \cdot HCO_2$ presents a nearly symmetrical μ-η²:η²-HCO₂ moiety. The Ta–Ta distance is 2.95 Å, which is not consistent with a formate unit between two Ta^N centers unless the two d electrons remain unpaired. NBO analysis shows that there are no unpaired electrons in the d orbitals of the Ta centers or the presence of a Ta−Ta bond. The Lewis configuration extracted from the NBO shows a covalent bond between Ta1 and the C atom and two dative bonds from both negatively charged O atoms to each Ta center. The system can thus be described with two electrons delocalized between both Ta–C bonds and formally Ta^V centers. The formation of the experimental product involves the transition state TS_2 -CO₂, which corresponds to the transfer of the second terminal hydride to the C atom of the $HCO₂$ unit. The activation barrier is calculated to be +20.5 kcal/mol, which is high but still kinetically accessible. The geometry of this transition state looks like that of TS_1 -CO₂, discussed above. The formation of 3 is calculated to be exergonic by −17.4 kcal/mol with respect to the dinuclear formate complex $Ta_2H_3 \cdot HCO_2$. The computed structure of 3 is similar to the experimental one, for example, with C−O, Ta−O,

and Ta−Ta bond lengths of 1.40 Å [1.388(10) Å exp], 1.95 Å [1.982(8) Å exp], and 2.80 Å [2.7693(9) Å exp], respectively. The highest occupied molecular orbital (HOMO) still corresponds to the σ interaction of the two d orbitals of Ta, confirming the $\mathrm{Ta}^{\mathrm{IV}}$ oxidation state. The importance of the metal is clearly evident because calculations using copper surfaces detail quite different intermediates.¹⁸

The reaction of $CO₂$ with the highly reducing ditantalum tetrahydride complex 1 proceeds by a migratory insertion process followed by reductive elimination, as summarized in Scheme 2.

Scheme 2

Of particular interest is how $CO₂$ interacts with the starting hydride. By using a computational approach, a low-energy structure emerged, wherein $CO₂$ binds reductively with tetrahydride 1 to generate $Ta_2H_4 \cdot CO_2$, wherein two of the bridging hydrides become terminal and the $CO₂$ unit is formally a CO_2^2 ⁻ moiety. One of the interesting insights that result from these calculations is the importance of the terminal hydride unit in the transformation documented in this work. While the starting tetrahydride 1 contains four bridging hydrides in its ground state, each step in the process involves a terminal hydride interacting with a small organic moiety in a bridging position. In the first transfer, the μ - η^2 : η^2 -formato complex Ta_2H_3 ·HCO₂ is generated and finally the methylene diolate product 3; this latter process is formally a dinuclear C−H reductive elimination, wherein the two Ta^V centers of $Ta_2H_3 \cdot HCO_2$ are converted to $\rm Ta^{IV}$ moieties in 3.

While dinuclear complexes offer unique activation modes for small molecules, mainly by invoking simultaneous interactions with two metal centers, in this work, we show that the strongly reducing ditantalum complex in concert with available hydrides can convert the important C_1 source CO_2 to a reduced form, in this case, a methylene diolate fragment. We are presently examining the effect of new ligand designs on the overall reducing power of a series of ditantalum tetrahydrides with $CO₂$ and other hard-to-activate small molecules.

■ ASSOCIATED CONTENT

6 Supporting Information

Experimental procedures, X-ray data collection and refinement procedures for 3, including the corresponding CIF file, computational details, Cartesian coordinates for optimized structures, schematic of HOMO−5 of the adduct Ta_2H_4 ·CO₂, and representative NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: laurent.maron@irsamc.ups-tlse.fr (L.M.), fryzuk@ chem.ubc.ca (M.D.F.). Tel: +1 604 822-2471. Fax: +1 604 822-8710.

[Notes](mailto:fryzuk@chem.ubc.ca)

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

M.D.F. thanks the NSERC of Canada for a Discovery Grant. L.M. is member of the Institut Universitaire de France. CINES and CalMip are acknowledged for a generous grant of computing time. J.B., M.D.F., and L.M. are also grateful to the Alexander von Humboldt Foundation for fellowships.

■ REFERENCES

(1) http://www.epa.gov/climatechange/ghgemissions/gases/co2. html.

(2) Darensbourg, D. J. Inorg. Chem. 2010, 49, 10765.

(3) [Tanaka,](http://www.epa.gov/climatechange/ghgemissions/gases/co2.html) [R.;](http://www.epa.gov/climatechange/ghgemissions/gases/co2.html) [Yamashita,](http://www.epa.gov/climatechange/ghgemissions/gases/co2.html) [M.;](http://www.epa.gov/climatechange/ghgemissions/gases/co2.html) [Nozaki,](http://www.epa.gov/climatechange/ghgemissions/gases/co2.html) [K.](http://www.epa.gov/climatechange/ghgemissions/gases/co2.html) J. Am. Chem. Soc. 2009, 131, [1416](http://www.epa.gov/climatechange/ghgemissions/gases/co2.html)8.

(4) Wesselbaum, S.; vom Stein, T.; Klankermeyer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499.

(5) Jessop, P. G.; Joo, F.; Tai, C.-C. ́ Coord. Chem. Rev. 2004, 248, 2425.

(6) Bernskoetter, W. H.; Tyler, B. T. Organometallics 2011, 30, 520.

(7) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kü hn, F. E. Angew. Chem., Int. Ed. 2011, 50, 8510.

(8) Finn, C.; Schnittger, S.; Yellowlees, L. J.; Love, J. B. Chem. Commun. 2012, 48, 1392.

(9) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.

(10) Carbon Dioxide Recovery and Utilization; Aresta, M., Ed.; Wiley-VCH: Weinheim, Germany, 2010.

(11) Fryzuk, M. D. Acc. Chem. Res. 2009, 42, 127.

(12) Fryzuk, M. D.; Johnson, S. A.; Patrick, B. O.; Albinati, A.; Mason, S. A.; Koetzle, T. F. J. Am. Chem. Soc. 2001, 123, 3960.

(13) Knobloch, D. J.; Toomey, H. E.; Chirik, P. J. J. Am. Chem. Soc. 2008, 130, 4248.

(14) Ballmann, J.; Yeo, A.; MacKay, B. A.; van Rijt, S.; Patrick, B. O.; Fryzuk, M. D. Chem. Commun. 2010, 46, 8794.

(15) Rankin, M. A.; Cummins, C. C. J. Am. Chem. Soc. 2010, 132, 10021.

(16) Tardif, O.; Hashizume, D.; Hou, Z. J. Am. Chem. Soc. 2004, 126, 8080.

(17) Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948.

(18) Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. Energy Environ. Sci. 2010, 3, 1311.